Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Pharmacol Res Perspect ; 9(1): e00691, 2021 02.
Article in English | MEDLINE | ID: covidwho-1384293

ABSTRACT

Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Coronavirus Infections/metabolism , Coronavirus/metabolism , Dipeptidyl Peptidase 4/metabolism , Severe Acute Respiratory Syndrome/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , Azoles/administration & dosage , Azoles/metabolism , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Humans , Isoindoles , Naphthoquinones/administration & dosage , Naphthoquinones/metabolism , Organoselenium Compounds/administration & dosage , Organoselenium Compounds/metabolism , Severe Acute Respiratory Syndrome/drug therapy , COVID-19 Drug Treatment
2.
Biomed Pharmacother ; 141: 111888, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1293595

ABSTRACT

Curcumin, isolated from Curcuma longa L., is a fat-soluble natural compound that can be obtained from ginger plant tuber roots, which accumulative evidences have demonstrated that it can resist viral and microbial infection and has anti-tumor, reduction of blood lipid and blood glucose, antioxidant and removal of free radicals, and is active against numerous disorders various chronic diseases including cardiovascular, pulmonary, neurological and autoimmune diseases. In this article is highlighted the recent evidence of curcuminoids applied in sevral aspects of medical problem particular in COVID-19 pandemics. We have searched several literature databases including MEDLINE (PubMed), EMBASE, the Web of Science, Cochrane Library, Google Scholar, and the ClinicalTrials.gov website via using curcumin and medicinal properties as a keyword. All studies published from the time when the database was established to May 2021 was retrieved. This review article summarizes the growing confirmation for the mechanisms related to curcumin's physiological and pharmacological effects with related target proteins interaction via molecular docking. The purpose is to provide deeper insight and understandings of curcumin's medicinal value in the discovery and development of new drugs. Curcumin could be used in the prevention or therapy of cardiovascular disease, respiratory diseases, cancer, neurodegeneration, infection, and inflammation based on cellular biochemical, physiological regulation, infection suppression and immunomodulation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antineoplastic Agents/therapeutic use , Antioxidants/therapeutic use , Curcumin/therapeutic use , Animals , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Curcumin/metabolism , Curcumin/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Structure, Secondary
3.
Molecules ; 26(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282542

ABSTRACT

The discovery of drugs capable of inhibiting SARS-CoV-2 is a priority for human beings due to the severity of the global health pandemic caused by COVID-19. To this end, repurposing of FDA-approved drugs such as NSAIDs against COVID-19 can provide therapeutic alternatives that could be utilized as an effective safe treatment for COVID-19. The anti-inflammatory activity of NSAIDs is also advantageous in the treatment of COVID-19, as it was found that SARS-CoV-2 is responsible for provoking inflammatory cytokine storms resulting in lung damage. In this study, 40 FDA-approved NSAIDs were evaluated through molecular docking against the main protease of SARS-CoV-2. Among the tested compounds, sulfinpyrazone 2, indomethacin 3, and auranofin 4 were proposed as potential antagonists of COVID-19 main protease. Molecular dynamics simulations were also carried out for the most promising members of the screened NSAID candidates (2, 3, and 4) to unravel the dynamic properties of NSAIDs at the target receptor. The conducted quantum mechanical study revealed that the hybrid functional B3PW91 provides a good description of the spatial parameters of auranofin 4. Interestingly, a promising structure-activity relationship (SAR) was concluded from our study that could help in the future design of potential SARS-CoV-2 main protease inhibitors with expected anti-inflammatory effects as well. NSAIDs may be used by medicinal chemists as lead compounds for the development of potent SARS-CoV-2 (Mpro) inhibitors. In addition, some NSAIDs can be selectively designated for treatment of inflammation resulting from COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19 Drug Treatment , Drug Repositioning/methods , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Auranofin/chemistry , Auranofin/pharmacology , Binding Sites , COVID-19/complications , Computational Biology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Databases, Chemical , Humans , Indomethacin/chemistry , Indomethacin/pharmacology , Ligands , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Structure-Activity Relationship , Sulfinpyrazone/chemistry , Sulfinpyrazone/pharmacology , United States , United States Food and Drug Administration
4.
Eur Rev Med Pharmacol Sci ; 25(10): 3923-3932, 2021 May.
Article in English | MEDLINE | ID: covidwho-1264769

ABSTRACT

Angiotensin converting enzyme 2 (ACE2) has potentially conflicting roles in health and disease. COVID-19 coronavirus binds to human cells via ACE2 receptor, which is expressed on almost all body organs. Boosting the ACE2 receptor levels on heart and lung cells may provide more cellular enter to virus thereby worsening the infection. Therefore, among the drug targets, ACE2 is suggested as a vital target of COVID-19 therapy. This hypothesis is based on the protective role of the drugs acting on ACE2. Therefore, this review discusses the impact and challenges of using ACE2 as a target in the current therapy of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Alanine/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Azithromycin/chemistry , Azithromycin/metabolism , Azithromycin/therapeutic use , COVID-19/virology , Humans , Hydroxychloroquine/chemistry , Hydroxychloroquine/metabolism , Hydroxychloroquine/therapeutic use , SARS-CoV-2/isolation & purification , Vitamin D/chemistry , Vitamin D/metabolism , Vitamin D/therapeutic use , COVID-19 Drug Treatment
5.
Sci Rep ; 11(1): 9606, 2021 05 05.
Article in English | MEDLINE | ID: covidwho-1217709

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Proteins/metabolism , SARS-CoV-2/drug effects , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/metabolism , Humans , Mitogen-Activated Protein Kinase 10/chemistry , Mitogen-Activated Protein Kinase 10/metabolism , Mitogen-Activated Protein Kinase 8/chemistry , Mitogen-Activated Protein Kinase 8/metabolism , Molecular Targeted Therapy , Protein Interaction Maps/drug effects , SARS-CoV-2/metabolism , Signal Transduction/drug effects , bcl-Associated Death Protein/chemistry , bcl-Associated Death Protein/metabolism , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL